CourseCode		Year		Semester	
Course Category	Minor in AE	Branch	ME	Course Type	Theory
Credits	4	L - T - P	3 - 1 - 0	Prerequisites	Automobile Engineering
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

AUTONOMOUS VEHICLES

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	BTL	Units
CO1	Understand technology and advancements applied in and connected, Automated and intelligent Cars	Understand	L2	1,2,3,4,5
CO2	Apply knowledge of sensor and wireless technology to execute systems in connected and autonomous cars	Apply	L3	2,3,5
CO 3	Analyze and critically evaluate the safety challenges associated with future vehicles to rate the ethical implications of alternative automotive technologies	Analyze	L4	1,4,5

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3		3	1	2	2		2		2	3	2
CO2	3		3		3	1	2			2		2	3	2
CO3	3		3		2	1	2	3		2		2	3	2

	Syllabus	
UNIT	Contents	
		COs
I	Introduction To Connected, Automated And Intelligent Cars Introduction to Connected, automated and Intelligent cars- Automotive Electronics Overview, Advanced Driver Assistance Electronic Systems, Connected Car Technology- Connectivity Fundamentals, Navigation and Other Applications, Connected and Autonomous Vehicle Technology Basic Control System Theory applied to Automobiles, Overview of the	CO1 CO3
П	Sensor Technology Sensor Technology for Advanced Driver Assistance Systems- Basics of Radar Technology and Systems, Ultrasonic Sonar Systems, Lidar Sensor Technology and Systems, Camera Technology, Night Vision Technology, Impaired Driver Technology Driver Impairment Sensor Technology, Sensor Technology for Driver Impairment Detection, Transfer of Control Technology	CO1 CO2
III	Introduction to Self-Driving Vehicle Technology	CO1

	Fundamentals of state-of-the-art SLAM, multi-sensor data fusion, and	CO2			
	other SDV algorithms. Robot Operating System (ROS) and Open				
	Source Car Control (OSCC).				
	Wireless System Standards and Standards Organizations				
	Wireless Networking and Applications to Vehicle Autonomy: Basics				
	of Computer Networking – the Internet of Things, Wireless Networking				
	Fundamentals, Integration of Wireless Networking and On-Board				
	Vehicle Networks				
	Acceptance, Security And Ethics Of Autonomous Driving				
	Why Ethics Matters for Autonomous Driving, Opportunities and Risks				
	Associated with Autonomous Driving. User / public Acceptance of				
IV	Autonomous Driving	CO1			
	Regulations, Policies And Standards Of Autonomous Driving	CO3			
	Regulatory bodies for highly automated and autonomous driving,				
	Policies and policy making in autonomous driving, Autonomous				
	driving, standardization bodies and standards				
	Recent Driver Assistance System And Vehicles				
	Recent Driver Assistance System Technology- Basics of Theory of				
	Operation, Applications – Legacy, Applications – New				
• •	Future Applications				
V	Integration of ADAS Technology into Vehicle Electronics, System				
	Examples. Role of Sensor Data Fusion. Recent Driver Assistance				
	System Technology applied in various automobile companies dealing				
	with Non-Passenger Car				

Learning Resources

Text books
1.George Dimitrakopoulos, Aggelos Tsakanikas, Elias Panagiotopoulos, "Autonomous
Vehicles Technologies, Regulations, and Societal Impacts", Elsevier Publications, 2021.
2.Dietmar P.F. Möller, Roland E. Haas, Guide to Automotive Connectivity and
Cybersecurity: Trends, Technologies, 2019, Springer Publications.
3.Hanky Sjafrie, "Introduction to Self-Driving Vehicle Technology", 1st Edition, Published
December 11, 2019 by Chapman and Hall/CRC
Reference books
1.G. Mullett, Wireless Telecommunications Systems and Networks, Thomson - Delmar
Learning, ISNB#1-4018-8659-0, 2006
2. G. Mullett, Basic Telecommunications: The Physical Layer, Thomson – Delmar Learning,
ISBN#1-4018-4339-5, 2003

3.Tom Denton, Automobile Electrical and Electronic Systems, 3rd Edition Elsevier Publications 2004.